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I also provide a purpose-built ADC/DAC board to support the lab experiment.  This 
analogue I/O board in only needed for Part 3 and 4 of VERI.  However I will now be 
examining the digital serial interface for these converter chips.
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This shows the block diagram of the analogue I/O card used in the VERI experiment.  
It consists of a DAC (MCP4911) and a ADC (MCP3002), both using Serial Peripheral 
Interface (SPI).  The DAC output is buffered by a unity gain opamp connected to the 
right channel of a stereo jack socket.  
The ADC has two input channels, one from a potentiometer providing a dc voltage 
(CH0) and another from the 3.5mm jack socket (CH1).  
Finally, there is a 2nd order low-pass active filter, the input of which is driven directly 
from a digital output pin of the Cyclone FPGA.  This is intended to provide filtering of 
a pulse-width modulated DAC output from the FPGA.
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The DAC used with the I/O card is 10-bit, and it uses the Serial Peripheral interface.  
Its functional block diagram is shown here.  The SPI interface has four signals, which 
should be drive by either the microcontroller or the FPGA.  The DAC itself uses a 
resistor string architecture (i.e. just a bunch of 1024 series resistors of identical 
values).  It has a selectable gain of 1X or 2X.
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To send a value to the DAC to output (i.e. produce the analogue output Vout), a 16-
bit value is sent to the DAC chip in a serial manner.  The Chip Select (SC) signal going 
low indicate that this is the start of the data.  This establishes the beginning of the 
data frame.  First data bit (bit 15) is always 0.  Bit 14 determines whether the 
reference voltage (Vreg) is buffered or not buffered (via an internal opamp).  For our 
design, Vref is around 3.3V.  
Bit 13 determines the gain of the DAC (x1 or x2).  Bit 12 is set to 1 if you are using 
the DAC, and set to 0 if you want to shutdown the device to conserve power.
Bit 11 to 2 contains the 10-bit data D[9:0] to convert into analogue voltage Vout, 
MSB first.  Bit 1 and 0 are don’t cares.
The LDAC (low active) signal can be connected to ground or used a low active strobe 
signal to transfer the data to the DAC register (i.e. tell the DAC to update Vout).  If 
LDAC is low, DAC update happens on rising edge of CS_bar.
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This is a simplified diagram showing how the Cyclone V FPGA is interfaced to the two 
data converters.  There are two ADC channels and in our experiment, we are mostly 
using channel 1 via the 3.5mm jack socket.  You will be supplying speech signals 
from the desktop computer.
There is one DAC which drives both the small speaker and, much better, drives the 
ear-phone.  (Please bring the ear-phone to the lab.)
The interface between the FPGA chip and the converters is through the SPI bus.  You 
are given the Verilog design for these two interface modules:  spi2dac.v and 
spi2adc.v.  In the rest of this lecture, I will be going through the design of the spi2dac 
module.
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In order to use the DAC, you have to include the interface module “spi2dac” in your 
design.  This module has a schematic shown above.  It takes two inputs (in addition 
to the 50MHz clock signal): data[9:0] is the 10-bit digital data to be converted by the 
DAC, and a load signal which is a high pulse to trigger the spi2dac module to send 
the 10-bit data to the DAC.

The internal working of sp2dac can be divided into 4 main modules.  The divide-by-
50 module is straight forward – it produces a 1MHz clock for the finite state 
machine, and is gated through the AND gate to generate the serial clock signal (at 
1MHz).
The load detector module handles the load command and produces control signals 
to the SPI state machine and the shift register.
The shift register sends the control bits and the 10-bit data serially to the SDI output.
The spi controller FSM is the main control module designed as a state machine.

We will now consider each sub-module individually.
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This is a straight forward clock divider.  The Terminal Count (TC) is set to 24. 
Divide by 50 is done by toggling the output (clk_1MHz) after 25 clock cycles.  
Note that I generally prefer to use a down-counter instead of an up-counter.  
The counter (ctr) is set to 24,  it then counts to zero.  Output is toggled and 
the counter (ctr) is reset to the initial value of 24 again.
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We have TWO signals to detect:  the load pulse and the dac_cs signal.  

Starting in the IDLE state, when load signal is asserted, we start the DAC cycle by 
entering the WAIT_CSB_FALL state.  In this state, dac_start is asserted, and we wait 
for DAC_CS to go low from the SPI controller circuit.  In this condition, the DAC is in 
the middle of accepting a new data for conversion.  We go to state WAIT_CSB_HIGH 
TO wait for the conversion to be completed, which is indicated by DAC_CS going 
high.  When that happens, we return to the IDLE state waiting for another 10-bit 
data to be loaded.
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The controlling  FSM controller is actually simpler than it first appears.  
We need a FSM to have 18 states. State 0 is the idle state, waiting for a new data to 
be sent to the DAC.  Here DAC_CS (which is low active) is ‘1’ and we wait for the 
dac_start to be asserted.
The default value of dac_cs and dac_ld are specified first.  By default we always go 
to the next state, i.e. state value goes up by 1.
Once the state machine moves to state 1, it just go through to state 16, which 
corresponds to cycle 0 to 15 in the timing diagram here.  At the end of state 16, we 
de-assert dac_cs (i.e. go high), assert dac_ld (low) and go back to the IDLE state.



12

Finally, the data and clock output is specified here.  SDI is driven through a parallel 
in, serial out shift register.  
We use a number of useful tricks here:
1.cmd is a 4-bit value defining the first four bits of the SDI data values.  We use 
symbolic variable names to make the code easy to read.
2.Shift_reg <= {cmd, data_in, 2’b00}      - parallel load the 16-bit value into the shift 
register.
3.Shift_reg <= {shift_reg[14:0], 1’b0}      - perform left shift

The SDI is taken from the MSB of the shift register.  The serial clock Is !dac_cs (low 
active) ANDed with the inverter version of the clock (making the rising edge of the 
SCK signal in the middle of the data bit).
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In the Lab experiment, you will test the spi2dac.v module both with the simulator 
and on the hardware (with a scope) by inspecting the output signals on the test pins 
(located at the top of the I/O board).

Ex 10 and 11 are simple, but will give you confidence that the interface module 
works.
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Here is the same slide as that found in Lecture 9.  Just a reminder for you on how the PWM 
module works.  It is very simple, but very effective.  You should compare the DAC output and 
PWM output, and see that the two methods are equally effective in producing an analogue 
voltage.


